JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Deregulation of the MiR-193b-KRAS Axis Contributes to Impaired Cell Growth in Pancreatic Cancer.

Modulation of KRAS activity by upstream signals has revealed a promising new approach for pancreatic cancer therapy; however, it is not clear whether microRNA-associated KRAS axis is involved in the carcinogenesis of pancreatic cancer. Here, we identified miR-193b as a tumor-suppressive miRNA in pancreatic ductal adenocarcinoma (PDAC). Expression analyses revealed that miR-193b was downregulated in (10/11) PDAC specimens and cell lines. Moreover, we found that miR-193b functioned as a cell-cycle brake in PDAC cells by inducing G1-phase arrest and reducing the fraction of cells in S phase, thereby leading to dampened cell proliferation. miR-193b also modulated the malignant transformation phenotype of PDAC cells by suppressing anchorage-independent growth. Mechanistically, KRAS was verified as a direct effector of miR-193b, through which the AKT and ERK pathways were modulated and cell growth of PDAC cells was suppressed. Taken together, our findings indicate that miR-193b-mediated deregulation of the KRAS axis is involved in pancreatic carcinogenesis, and suggest that miR-193b could be a potentially effective target for PDAC therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app