Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

GATA-3 augmentation down-regulates Connexin43 in Helicobacter pylori associated gastric carcinogenesis.

Helicobacter pylori (H. pylori) is a risk factor of gastric carcinoma, and inflammation with H.pylori infection has widely been suggested to trigger gastric carcinogenesis through "inflammation-carcinoma chain" (non-atrophic gastritis (NAG) → chronic atrophic gastritis (CAG) → intestinal metaplasia (IM) → dysplasia (DYS) and gastric carcinoma (GC)). Connexin43 (Cx43) is a major constituent of gap junction in normal gastric mucosa (NGM) and it is continuously down-regulated from normal gastric mucosa to precancerous lesions or ultimate gastric carcinoma, which shows novel target against gastric carcinoma by preventing the Cx43 decline. Our previous studies demonstrated that H. pylori infection in gastric mucosa down-regulates Cx43 expression, but its mechanism remains unknown. The transcriptional factor, GATA binding protein 3 (GATA-3) is the key to regulate adaptive immune response, which possibly relates to inflammation toward malignant transformation. Here the substantial rising of GATA-3 was screened by transcriptional factor microarray along the developmental stages of H. pylori associated gastric carcinoma. Moreover, the increased GATA-3 and inhibited Cx43 were confirmed in clinical specimens, Mongolian gerbils and normal gastric epithelial cell line GES-1 with H. pylori infection. GATA-3 silencing generated the Cx43 restoration both in intermediate differentiation gastric cancer cells BGC-803 and in H. pylori infected GES-1 cells. Dual-luciferase reporter assay further revealed the GATA-3 as one of Cx43 down-regulators by directly binding to its promoters. Together, the incremental GATA-3 is found in H. pylori associated gastric carcinogenesis, which is responsible for Cx43 inhibition as well.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app