JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Semisynthesis and initial characterization of sortase A mutants containing selenocysteine and homocysteine.

The bacterial transpeptidase sortase A is a well-established tool in protein chemistry and catalyzes the chemoselective ligation of peptides and proteins. During catalysis sortase A cleaves the conserved Leu-Pro-X-Thr-Gly sorting motif at the Thr residue under concomitant thioester formation at active site Cys184. We have used expressed protein ligation (EPL) to generate sortase mutants with Cys184 replaced by selenocysteine (Sec) and homocysteine (Hcy). Sec-sortase showed a moderate 2-3-fold reduction in catalytic activity in contrast to Hcy-sortase which is a poor catalyst with less than 1% of wild-type activity. The sensitivity of the active site nucleophiles towards an alkylation reagent correlated with the pKa values of the mutated residues. Furthermore, the pH-profile of Sec-sortase was shifted to more acidic conditions when compared to the wild-type enzyme. These observations provide information on sortase catalysis and the semisynthetic enzymes might represent useful tools for further biochemical investigations and engineering approaches of sortases A.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app