Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A novel method for downstream characterization of breast cancer circulating tumor cells following CellSearch isolation.

BACKGROUND: Enumeration of circulating tumor cells (CTCs) obtained from minimally invasive blood samples has been well established as a valuable monitoring tool in metastatic and early breast cancer, as well as in several other cancer types. The gold standard technology for detecting CTCs in blood against a backdrop of millions of leukocytes is the FDA-approved CellSearch system (Janssen Diagnostics), which relies on EpCAM-based immunomagnetic separation. Secondary characterization of these cells could enable treatment selection based on specific targets in these cells, as well as providing a real time window into the metastatic process and offering unique insights into tumor heterogeneity. The objective of this study was to develop a method for downstream characterization of CTCs following isolation with the CellSearch system.

METHODS: An in vitro CTC model system focusing on clinically useful treatment predictive biomarkers in breast cancer, specifically the estrogen receptor α (ERα) and the human epidermal growth factor receptor 2 (HER2), was established using healthy donor blood spiked with breast cancer cell lines MCF7 (ERα(+)/HER2(-)) and SKBr3 (ERα(-)/HER2(+)). Following CTC isolation by CellSearch, the captured CTCs were further enriched and fixed on a microscope slide using the in-house-developed CTC-DropMount technique.

RESULTS: The recovery rate of CTCs after CellSearch Profile analysis and CTC-DropMount was 87%. A selective and consistent triple-immunostaining protocol was optimized. Cells positive for DAPI, cytokeratin (CK) 8, 18 and 19, but negative for the leukocyte-specific marker CD45, were classified as CTCs and subsequently analyzed for ERα and HER2 expression. The method was verified in breast cancer patient samples, thus demonstrating its clinical relevance.

CONCLUSIONS: Our results show that it is possible to ascertain the status of important predictive biomarkers expressed in breast cancer CTCs using the newly developed CTC-DropMount technique. Downstream characterization of multiple biomarkers using a standard fluorescence microscope demonstrates that important clinical and biological information may be obtained from a single patient blood sample following either CellSearch epithelial or profile analyses.

TRIAL REGISTRATION: Clinical Trials NCT01322893.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app