Journal Article
Research Support, N.I.H., Intramural
Add like
Add dislike
Add to saved papers

Immunity, suicide or both? Ecological determinants for the combined evolution of anti-pathogen defense systems.

BACKGROUND: Parasite-host arms race is one of the key factors in the evolution of life. Most cellular life forms, in particular prokaryotes, possess diverse forms of defense against pathogens including innate immunity, adaptive immunity and programmed cell death (altruistic suicide). Coevolution of these different but interacting defense strategies yields complex evolutionary regimes.

RESULTS: We develop and extensively analyze a computational model of coevolution of different defense strategies to show that suicide as a defense mechanism can evolve only in structured populations and when the attainable degree of immunity against pathogens is limited. The general principle of defense evolution seems to be that hosts do not evolve two costly defense mechanisms when one is sufficient. Thus, the evolutionary interplay of innate immunity, adaptive immunity and suicide, leads to an equilibrium state where the combination of all three defense strategies is limited to a distinct, small region of the parameter space. The three strategies can stably coexist only if none of them are highly effective. Coupled adaptive immunity-suicide systems, the existence of which is implied by the colocalization of genes for the two types of defense in prokaryotic genomes, can evolve either when immunity-associated suicide is more efficacious than other suicide systems or when adaptive immunity functionally depends on the associated suicide system.

CONCLUSIONS: Computational modeling reveals a broad range of outcomes of coevolution of anti-pathogen defense strategies depending on the relative efficacy of different mechanisms and population structure. Some of the predictions of the model appear compatible with recent experimental evolution results and call for additional experiments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app