Add like
Add dislike
Add to saved papers

[Diffusion weighted imaging and perfusion weighted imaging in the differential diagnosis of benign and malignant renal masses on 3.0 T MRI].

OBJECTIVE: To explore the value of diffusion weighted imaging (DWI) and perfusion weighted imaging (PWI) in identifying benign and malignant renal masses and differentiating the histological types of renal masses.

METHODS: Fifteen healthy volunteers and 46 patients with renal masses proven by pathology, including clear cell carcinomas (n = 18), papillary carcinomas (n = 8), chromophobe carcinomas (n = 7) and angiomyolipomas (n = 13), were examined with DWI and PWI scan at 3.0 T MRI. ANOVA was employed to compare the values of transfer constant (K(trans)), rate constant of backflux (Kep) and extra-vascular extra-cellular space fractional volume (Ve) proceeded by PWI and the value of ADC resulted from DWI between normal kidney and different histological types of renal masses. Receiver operating characteristics (ROC) curve was used to analyze and compare the diagnostic value of the methods of PWI and DWI in differentiating benign and malignant renal masses.

RESULTS: The ADC value of normal renal parenchyma was (2.10 ± 0.24) × 10⁻³ mm²/s, which was statistically higher than benign and malignant renal masses (P < 0.05). The ADC value of benign masses was statistically higher than that of all histological types of malignant masses (P < 0.05). Among three histological types of malignancies, clear cell carcinoma showed the statistically highest ADC value (P < 0.05). But the difference between papillary carcinoma and chromophobe carcinoma had no statistical significance (P > 0.05).Values of K(trans), Kep and Ve between normal renal parenchyma and different histological types of renal masses had statistical differences.Values of K(trans) and Ve in three histological types of malignant renal masses were statistically higher than those of benign renal masses.Kep value of clear cell carcinoma was significantly higher than that of benign renal masses (P < 0.05).However, other histological types of malignant masses had no significant difference with benign masses.For three malignant masses, K(trans) of clear cell carcinoma, papillary carcinoma and chromophobe carcinoma were (0.85 ± 0.27), (0.51 ± 0.04) and (0.39 ± 0.05)/min respectively. All values gradually reduced. And the differences were statistically significant (P < 0.05). The Ve value of renal clear cell carcinoma was statistically higher than that of papillary carcinoma (P < 0.05). ROC curve was used to analyze and compare the diagnostic value of PWI versus DWI in differentiating benign and malignant renal masses. The K(trans) of benign and malignant renal masses had the largest AUC (AUC = 0.937) at a threshold of 0.38/min. And there were a sensitivity of 87.9% and a specificity of 85.7%. The AUC of ADC was 0.823, sensitivity 72.7% and specificity 92.9%. The ADC threshold for differentiating benign from malignant masses was 1.40 × 10⁻³ mm²/s; AUC of Ve 0.803, sensitivity 78.8% and specificity 71.4%, a threshold of 0.29/min; Kep showed lower diagnostic value.

CONCLUSION: 3.0 T MRI DWI and PWI can effectively differentiate benign and different histological types of malignant renal masses. And PWI is superior to DWI in differentiating benign and malignant renal masses.K(trans) with the largest AUC showed the highest diagnostic value. And ADC is also irreplaceable in providing the information of cellular structural features and the movement of water diffusion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app