JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Optimization of antigen dose for a receptor-binding domain-based subunit vaccine against MERS coronavirus.

Middle East respiratory syndrome (MERS) is an emerging infectious disease caused by MERS coronavirus (MERS-CoV). The continuous increase of MERS cases has posed a serious threat to public health worldwide, calling for development of safe and effective MERS vaccines. We have previously shown that a recombinant protein containing residues 377-588 of MERS-CoV receptor-binding domain (RBD) fused with human Fc (S377-588-Fc) induced highly potent anti-MERS-CoV neutralizing antibodies in the presence of MF59 adjuvant. Here we optimized the doses of S377-588-Fc using MF59 as an adjuvant in order to elicit strong immune responses with minimal amount of antigen. Our results showed that S377-588-Fc at 1 μg was able to induce in the immunized mice potent humoral and cellular immune responses. Particularly, S377-588-Fc at 1 μg elicited strong neutralizing antibody responses against both pseudotyped and live MERS-CoV similar to those induced at 5 and 20 μg, respectively. These results suggest that this RBD-based subunit MERS vaccine candidate at the dose as low as one μg is sufficiently potent to induce strong humoral and cellular immune responses, including neutralizing antibodies, against MERS-CoV infection, thus providing guidance for determining the optimal dosage of RBD-based MERS vaccines in the future clinical trials and for applying the dose-sparing strategy in other subunit vaccine trials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app