JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Systems Biology Modeling of Five Pathways for Regulation and Potent Inhibition of the Anaphase-Promoting Complex (APC/C): Pivotal Roles for MCC and BubR1.

Correct DNA segregation is a fundamental process that ensures the precise and reliable inheritance of genomic information for the propagation of cell life. Eukaryotic cells have evolved a conserved surveillance control mechanism for DNA segregation named the Spindle Assembly Checkpoint (SAC).The SAC ensures that the sister chromatids of the duplicated genome are not separated and distributed to the spindle poles before all chromosomes have been properly linked to the microtubules of the mitotic spindle. Biochemically, the SAC delays cell cycle progression by preventing activation of the anaphase-promoting complex (APC/C) or cyclosome whose activation by Cdc20 is required for sister-chromatid separation; this marks the transition into anaphase. In response to activation of the checkpoint, various species control the activity of both APC/C and Cdc20. However, the underlying regulatory pathways remain largely elusive. In this study, five possible model variants of APC/C regulation were constructed, namely BubR1, Mad2, MCC, MCF2, and an all-pathways model variant. These models were validated with experimental data from the literature. A wide range of parameter values has been tested to find the critical values of the APC/C binding rate. The results show that all variants are able to capture the wild-type behavior of the APC/C. However, only one model variant, which included both MCC as well as BubR1 as potent inhibitors of the APC/C, was able to reproduce both wild-type and mutant type behavior of APC/C regulation. In conclusion, the presented work informs the regulation of fundamental processes such as SAC and APC/C in cell biology and has successfully distinguished between five competing dynamical models using a systems biology approach. The results attest that systems-level approaches are vital for molecular and cell biology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app