Accuracy and Test-Retest Reproducibility of Two-Dimensional Knowledge-Based Volumetric Reconstruction of the Right Ventricle in Pulmonary Hypertension

Daniel S Knight, Johannes P Schwaiger, Sylvia Krupickova, Joseph Davar, Vivek Muthurangu, J Gerry Coghlan
Journal of the American Society of Echocardiography 2015, 28 (8): 989-98

BACKGROUND: Right heart function is the key determinant of symptoms and prognosis in pulmonary hypertension (PH), but the right ventricle has a complex geometry that is challenging to quantify by two-dimensional (2D) echocardiography. A novel 2D echocardiographic technique for right ventricular (RV) quantitation involves knowledge-based reconstruction (KBR), a hybrid of 2D echocardiography-acquired coordinates localized in three-dimensional space and connected by reference to a disease-specific RV shape library. The aim of this study was to determine the accuracy of 2D KBR against cardiac magnetic resonance imaging in PH and the test-retest reproducibility of both conventional 2D echocardiographic RV fractional area change (FAC) and 2D KBR.

METHODS: Twenty-eight patients with PH underwent same-day echocardiography and cardiac magnetic resonance imaging. Two operators performed serial RV FAC and 2D KBR acquisition and postprocessing to assess inter- and intraobserver test-retest reproducibility.

RESULTS: Bland-Altman analysis (mean bias ± 95% limits of agreement) showed good agreement for end-diastolic volume (3.5 ± 25.0 mL), end-systolic volume (0.9 ± 19.9 mL), stroke volume (2.6 ± 23.1 mL), and ejection fraction (0.4 ± 10.2%) measured by 2D KBR and cardiac magnetic resonance imaging. There were no significant interobserver or intraobserver test-retest differences for 2D KBR RV metrics, with acceptable limits of agreement (interobserver end-diastolic volume, -0.9 ± 21.8 mL; end-systolic volume, -1.3 ± 25.8 mL; stroke volume, -0.2 ± 24.2 mL; ejection fraction, 0.7 ± 14.4%). Significant test-retest variability was observed for 2D echocardiographic RV areas and FAC.

CONCLUSIONS: Two-dimensional KBR is an accurate, novel technique for RV volumetric quantification in PH, with superior test-retest reproducibility compared with conventional 2D echocardiographic RV FAC.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"