JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Small RNA deep sequencing reveals the important role of microRNAs in the halophyte Halostachys caspica.

MicroRNAs (miRNAs), an extensive class of small regulatory RNAs, play versatile roles in plant growth and development as well as stress responses. However, the regulatory mechanism is unclear on miRNA-mediated response to abiotic stress in plants. Halostachys caspica is a halophytic plant species and a great model for investigating plant response to salinity stress. However, no research has been performed on miRNAs in H. caspica. In this study, we employed deep sequencing to identify both conserved and novel miRNAs from salinity-exposed H. caspica and its untreated control. Among the 13-19 million sequences generated from both treatments, a total of 170 conserved miRNAs, belonging to 151 miRNA families, were identified; among these miRNAs, 31 were significantly up-regulated and 48 were significantly down-regulated by salinity stress. We also identified 102 novel miRNAs from H. caspica; among them, 12 miRNAs were significantly up-regulated and 13 were significantly down-regulated by salinity. qRT-PCR expression analysis validated the deep sequencing results and also demonstrated that miRNAs and their targeted genes were responsive to high salt stress and existed a negative expression correlation between miRNAs and their targets. miRNA-target prediction, GO and KEGG analysis showed that miRNAs were involved in salt stress-related biological pathway, including calcium signalling pathway, MAPK signalling pathway, plant hormone signal transduction and flavonoid biosynthesis, etc. This suggests that miRNAs play an important role in plant salt stress tolerance in H. caspica. This result could be used to improve salt tolerance in crops and woods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app