Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

MiR-22/Sp-1 Links Estrogens With the Up-Regulation of Cystathionine γ-Lyase in Myocardium, Which Contributes to Estrogenic Cardioprotection Against Oxidative Stress.

Endocrinology 2015 June
Hydrogen sulfide, generated in the myocardium predominantly via cystathionine-γ-lyase (CSE), is cardioprotective. Our previous study has shown that estrogens enhance CSE expression in myocardium of female rats. The present study aims to explore the mechanisms by which estrogens regulate CSE expression, in particular to clarify the role of estrogen receptor subtypes and the transcriptional factor responsible for the estrogenic effects. We found that either the CSE inhibitor or the CSE small interfering RNA attenuated the protective effect of 17β-estradiol (E2) against H2O2- and hypoxia/reoxygenation-induced injury in primary cultured neonatal cardiomyocytes. E2 stimulates CSE expression via estrogen receptor (ER)-α both in cultured cardiomyocytes in vitro and in the myocardium of female mice in vivo. A specificity protein-1 (Sp-1) consensus site was identified in the rat CSE promoter and was found to mediate the E2-induced CSE expression. E2 increases ERα and Sp-1 and inhibits microRNA (miR)-22 expression in myocardium of ovariectomized rats. In primary cardiomyocytes, E2 stimulates Sp-1 expression through the ERα-mediated down-regulation of miR-22. It was confirmed that both ERα and Sp-1 were targeted by miR-22. In the myocardium of ovariectomized rats, the level of miR-22 inversely correlated to CSE, ERα, Sp-1, and antioxidant biomarkers and positively correlated to oxidative biomarkers. In summary, this study demonstrates that estrogens stimulate Sp-1 through the ERα-mediated down-regulation of miR-22 in cardiomyocytes, leading to the up-regulation of CSE, which in turn results in an increase of antioxidative defense. Interaction of ERα, miR-22, and Sp-1 may play a critical role in the control of oxidative stress status in the myocardium of female rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app