Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Robust Adaptive Neural Tracking Control for a Class of Stochastic Nonlinear Interconnected Systems.

In this paper, an adaptive neural decentralized control approach is proposed for a class of multiple input and multiple output uncertain stochastic nonlinear strong interconnected systems. Radial basis function neural networks are used to approximate the packaged unknown nonlinearities, and backstepping technique is utilized to construct an adaptive neural decentralized controller. The proposed control scheme can guarantee that all signals of the resulting closed-loop system are semiglobally uniformly ultimately bounded in the sense of fourth moment, and the tracking errors eventually converge to a small neighborhood around the origin. The main feature of this paper is that the proposed approach is capable of controlling the stochastic systems with strong interconnected nonlinearities both in the drift and diffusion terms that are the functions of all states of the overall system. Simulation results are used to illustrate the effectiveness of the suggested approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app