Changes of cerebral white matter in patients suffering from Pantothenate Kinase-Associated Neurodegeneration (PKAN): A diffusion tensor imaging (DTI) study.
Parkinsonism & related Disorders 2015 June
BACKGROUND: To look for microstructural white matter alterations in patients with dystonia due to Pantothenate Kinase-Associated Neurodegeneration.
MATERIAL AND METHODS: We examined 21 genetically confirmed patients and an age-matched group of 21 healthy controls by diffusion tensor imaging. Evaluation of data was performed by tract-based spatial statistics analysis and a voxel-wise comparison of calculated maps of fractional anisotropy. Findings were compared between groups and correlated to the dystonia score of the Burke-Fahn-Marsden Scale (p ≤ 0.05).
RESULTS: Patients showed reductions of fractional anisotropy mainly in the periventricular substance surrounding the third ventricle, in the medial part of both putamina and in the frontal white matter including the anterior limbs of the internal capsules and the corpus callosum. Infratentorially, the cerebellar white matter and dorsal parts of the pons and medulla were affected.
CONCLUSION: In addition to cortical grey matter changes, we now have a second structural finding pointing to a more widespread affection of cerebral tissue in PKAN dystonia than just the lesion and iron accumulation in the globus pallidus.
MATERIAL AND METHODS: We examined 21 genetically confirmed patients and an age-matched group of 21 healthy controls by diffusion tensor imaging. Evaluation of data was performed by tract-based spatial statistics analysis and a voxel-wise comparison of calculated maps of fractional anisotropy. Findings were compared between groups and correlated to the dystonia score of the Burke-Fahn-Marsden Scale (p ≤ 0.05).
RESULTS: Patients showed reductions of fractional anisotropy mainly in the periventricular substance surrounding the third ventricle, in the medial part of both putamina and in the frontal white matter including the anterior limbs of the internal capsules and the corpus callosum. Infratentorially, the cerebellar white matter and dorsal parts of the pons and medulla were affected.
CONCLUSION: In addition to cortical grey matter changes, we now have a second structural finding pointing to a more widespread affection of cerebral tissue in PKAN dystonia than just the lesion and iron accumulation in the globus pallidus.
Full text links
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app