Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

4Aβ1-15-Derived Monoclonal Antibody Reduces More Aβ Burdens and Neuroinflammation than Homologous Vaccine in APP/PS1 Mice.

The common pathological hallmark of Alzheimer's disease (AD) is β-amyloid plaque deposition. The ideal therapy would reduce the Aβ burden with a low inflammatory immune response. Passive immunotherapy is an advanced treatment that dramatically reduces brain Aβ pathologies in AD animal models. The objective of our study was to observe the effects of 5C8H5, a novel monoclonal antibody derived from 4Aβ1-15, on brain Aβ pathology in an APP/PS1 mouse model of AD. Six-month-old transgenic mice were administered 5C8H5, 4Aβ1-15 or IgG, and same-aged wild-type untreated C57Bl/6J mice were employed as controls. Inflammatory factors and Aβ40/42 levels were detected by ELISA, while Aβ plaques, microglial cell activation, microhemorrhages and neurogenesis were evaluated by immunohistochemical staining. Compared with 4Aβ1-15-treated mice, the mice in the 5C8H5 group induced more Aβ clearance with less microglial cell activation in a niche of Th2-polarized immune response. The levels of proinflammatory factors, including IL-1β, IL-6, TNF-α and IFN-γ, were significantly decreased in the CNS, while the level of antiinflammatory IL-4 was increased. Moreover, the mice in the 5C8H5 group induced more neurogenesis without microhemorrhage exacerbation and thereby performed better in behavioral assays than did the 4Aβ1-15 group. In conclusion, the novel monoclonal antibody induces more Aβ clearance and less microglial cell activation in the absence of inflammation, accompanied by an increased Th2-polarized immune response, which makes it a more promising therapeutic strategy. These data provide evidence that passive immunity could alleviate pathologic Aβ alterations by modulating inflammation and should be pursued further for the treatment of AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app