Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A peroxiredoxin, PRDX-2, is required for insulin secretion and insulin/IIS-dependent regulation of stress resistance and longevity.

Aging Cell 2015 August
Peroxiredoxins (Prx) are abundant thiol peroxidases with a conserved anti-ageing role. In contrast to most animals, the nematode worm, Caenorhabditis elegans, encodes a single cytosolic 2-Cys Prx, PRDX-2, rendering it an excellent model for examining how peroxiredoxins affect animal physiology and ageing. Our previous work revealed that, although PRDX-2 protects against the toxicity of peroxides, enigmatically, prdx-2-mutant animals are hyper-resistant to other forms of oxidative stress. Here, we have investigated the basis for this increased resistance. Mammalian FOXO and Nrf2 transcription factors directly promote the expression of a range of detoxification enzymes. We show that the FOXO orthologue, DAF-16, and the Nrf2 orthologue, SKN-1, are required for the increased stress resistance of prdx-2-mutant worms. Our data suggest that PRDX-2 is required for normal levels of insulin secretion and hence the inhibition of DAF-16 and SKN-1 by insulin/IGF-1-like signalling (IIS) under nutrient-rich conditions. Intriguingly, loss of PRDX-2 increases DAF-16 and SKN-1 activities sufficiently to increase arsenite resistance without initiating other IIS-inhibited processes. Together, these data suggest that loss of peroxiredoxin function may increase stress resistance by reducing insulin secretion, but that further changes in insulin signalling are required for the reprogramming of development and fat metabolism. In addition, we reveal that the temperature-dependent prolongevity function of PRDX-2 is required for the extended lifespan associated with several pathways, including further reductions in IIS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app