JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Multi-modular, tris(triphenylamine) zinc porphyrin-zinc phthalocyanine-fullerene conjugate as a broadband capturing, charge stabilizing, photosynthetic 'antenna-reaction center' mimic.

Nanoscale 2015 April 22
A broadband capturing, charge stabilizing, photosynthetic antenna-reaction center model compound has been newly synthesized and characterized. The model compound is comprised of a zinc porphyrin covalently linked to three units of triphenylamine entities and a zinc phthalocyanine entity. The absorption and fluorescence spectra of zinc porphyrin complemented that of zinc phthalocyanine offering broadband coverage. Stepwise energy transfer from singlet excited triphenylamine to zinc porphyrin, and singlet excited zinc porphyrin to zinc phthalocyanine (kENT ∼ 10(11) s(-1)) was established from spectroscopic and time-resolved transient absorption techniques. Next, an electron acceptor, fullerene was introduced via metal-ligand axial coordination to both zinc porphyrin and zinc phthalocyanine centers, and they were characterized by spectroscopic and electrochemical techniques. An association constant of 4.9 × 10(4) M(-1) for phenylimidazole functionalized fullerene binding to zinc porphyrin, and 5.1 × 10(4) M(-1) for it binding to zinc phthalocyanine was obtained. An energy level diagram for the occurrence of different photochemical events within the multi-modular donor-acceptor conjugate was established from spectral and electrochemical data. Unlike the previous zinc porphyrin-zinc phthalocyanine-fullerene conjugates, the newly assembled donor-acceptor conjugate has been shown to undergo the much anticipated initial charge separation from singlet excited zinc porphyrin to the coordinated fullerene followed by a hole shift process to zinc phthalocyanine resulting in a long-lived charge separated state as revealed by femto- and nanosecond transient absorption spectroscopic techniques. The lifetime of the final charge separated state was about 100 ns.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app