Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Sensitive immunosensor for N-terminal pro-brain natriuretic peptide based on N-(aminobutyl)-N-(ethylisoluminol)-functionalized gold nanodots/multiwalled carbon nanotube electrochemiluminescence nanointerface.

A novel electrochemiluminescence (ECL) immunosensor was developed for the determination of N-terminal pro-brain natriuretic peptide (NT-proBNP) by using N-(aminobutyl)-N-(ethylisoluminol) (ABEI)-functionalized gold nanodots/chitosan/multiwalled carbon nanotubes (ABEI/GNDs/chitosan/COOH-MWCNTs) hybrid as nanointerface. First, ABEI/GNDs/chitosan/COOH-MWCNTs hybrid nanomaterials were grafted onto the surface of ITO electrode via the film-forming property of hybrid nanomaterials. The anti-NT-proBNP antibody was connected to the surface of modified electrode by virtue of amide reaction via glutaraldehyde. The obtained sensing platform showed strong and stable ECL signal. When NT-proBNP was captured by its antibody immobilized on the sensing platform via immunoreaction, the ECL intensity decreased. Direct ECL signal changes were used for the determination of NT-proBNP. The present ECL immunosensor demonstrated a quite wide linear range of 0.01-100 pg/mL. The achieved low detection limit of 3.86 fg/mL was about 3 orders of magnitude lower than that obtained with electrochemistry method reported previously. Because of the simple and fast analysis, high sensitivity and selectivity, and stable and reliable response, the present immunosensor has been successfully applied to quantify NT-proBNP in practical plasma samples. The success of the sensor in this work also confirms that ABEI/GNDs/chitosan/COOH-MWCNTs hybrid is an ideal nanointerface to fabricate a sensing platform. Furthermore, the proposed strategy could be applied in the detection of other clinically important biomarkers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app