JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The natural, peptaibolic peptide SPF-5506-A4 adopts a β-bend spiral structure, shows low hemolytic activity and targets membranes through formation of large pores.

The medium-length fungal peptaibol SPF-5506-A(4) has been shown to inhibit formation of the Aβ peptide involved in Alzheimer''s disease. As Aβ is a cleavage-product from the membrane-bound APP protein, we hypothesized that SPF-5506-A(4)'s activity might be linked to membrane interactions in general. Here we describe the synthesis, structure and membrane interactions of SPF-5506-A4. The challenging synthesis was carried out on solid phase and a detailed conformational analysis in solution revealed a β-bend ribbon spiral core structure with flexible termini. Investigations of its membrane activity revealed low hemolytic activity, limited inhibition of both Gram-positive and Gram-negative cell growth and a preference for an overall negatively charged membrane surface mimicking the bacterial cell surface. SPF-5506-A(4) is the first peptaibol to be shown to facilitate leakage of large (4.6 nm diameter) fluorescence-labeled dextran from vesicles while leaving the vesicles intact. We conclude that SPF-5506-A(4) follows the toroidal pore model in its mode of action.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app