JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Pterostilbene inhibits triple-negative breast cancer metastasis via inducing microRNA-205 expression and negatively modulates epithelial-to-mesenchymal transition.

Breast cancer is the leading cause of cancer-related deaths among females in economically developing countries. Greater than 95% of breast malignancies are of epithelial origin; the induction of epithelial-to-mesenchymal transition (EMT) has been shown to initiate the metastatic process in breast carcinoma and remains the key target for drug development. Here, we examine the anti-metastatic potential of pterostilbene in modulating EMT process in breast cancer cells both in vitro and in vivo. The differential invasive ability among MCF7, Hs578t and MDA-MB-231 breast cancer cell lines were closely correlated with the expression of EMT markers, determined by Western blots and Matrigel-coated transwells assay. Pterostilbene inhibited the migratory and invasive potential of triple-negative MDA-MB-231 and Hs578t cells, accompanied by the up-regulation of E-cadherin and down-regulation of Snail, Slug, vimentin and ZEB1. Mechanistic investigations revealed a significant up-regulation of miR-205, which resulted in the reduction of Src expression in pterostilbene-treated breast cancer cells. Importantly, pterostilbene suppressed tumor growth and metastasis in MDA-MB-231-bearing NOD/SCID mice by reducing Src/Fak signaling; this observation was consistent with the negative correlations between miR-205 and Src expression in both normal and malignant breast tissues. Our findings provide supports for the usage of pterostilbene as an inhibitor of EMT process and potential candidate for adjuvant therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app