JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Preparation of core-shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization.

A flexible, biocompatible and bioadhesive enzyme immobilizing material, which was synthesized based on the covalent assembly of biomimetic polymer and oxidized polysaccharide on magnetic nanoparticles (NPs), has been developed in this feasibility study. In this work, the bio-inspired polymer, polydopamine (PDA), was used to modify the well-monodispersed Fe3O4 NPs (mPDA NPs) with a controllable thickness via a dip-coating process, then the alginate di-aldehyde (ADA) was covalently assembled on the mPDA NPs and employed as a naturally occurring linking agent for Candida rugosa lipase (CRL) immobilization. The resulting support material was characterized by means of the transmission electron microscope (TEM), Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), thermogravimetry (TG) analyser, and vibrating sample magnetometer (VSM). It was verified that the prepared mPDA NPs possessed distinct core-shell structure with uniform size and high saturation magnetization. For further application, the mPDA NPs was utilized in CRL immobilizing procedures and demonstrated can facilitate improving the enzyme activities. The optimum amount of lipase was 200 mg g(-1) support, the optimal pH and temperature for the catalyse condition of the immobilized CRL was 7.0 and 40°C, respectively. Moreover, the immobilized CRL kept the high activity at 77% after 12 times of recycling for batch hydrolysis of olive oil emulsion. This magnetic bioadhesive composite with functionalized properties and adhesion strength presents a general strategy for the immobilization of macromolecules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app