JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Canonical Wnt signaling in the oligodendroglial lineage--puzzles remain.

Glia 2015 October
The straightforward concept that accentuated Wnt signaling via the Wnt-receptor-β-catenin-TCF/LEF cascade (also termed canonical Wnt signaling or Wnt/β-catenin signaling) delays or blocks oligodendrocyte differentiation is very appealing. According to this concept, canonical Wnt signaling is responsible for remyelination failure in multiple sclerosis and for persistent hypomyelination in periventricular leukomalacia. This has given rise to the hope that pharmacologically inhibiting this signaling will be of therapeutic potential in these disabling neurological disorders. But current studies suggest that Wnt/β-catenin signaling plays distinct roles in oligodendrogenesis, oligodendrocyte differentiation, and myelination in a context-dependent manner (central nervous system regions, developmental stages), and that Wnt/β-catenin signaling interplays with, and is subjected to regulation by, other central nervous system factors and signaling pathways. On this basis, we propose the more nuanced concept that endogenous Wnt/β-catenin activity is delicately and temporally regulated to ensure the seamless development of oligodendroglial lineage cells in different contexts. In this review, we discuss the role Wnt/β-catenin signaling in oligodendrocyte development, focusing on the interpretation of disparate results, and highlighting areas where important questions remain to be answered about oligodendroglial lineage Wnt/β-catenin signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app