Highly tunable molecular sieving and adsorption properties of mixed-linker zeolitic imidazolate frameworks

Kiwon Eum, Krishna C Jayachandrababu, Fereshteh Rashidi, Ke Zhang, Johannes Leisen, Samuel Graham, Ryan P Lively, Ronald R Chance, David S Sholl, Christopher W Jones, Sankar Nair
Journal of the American Chemical Society 2015 April 1, 137 (12): 4191-7
Nanoporous zeolitic imidazolate frameworks (ZIFs) form structural topologies equivalent to zeolites. ZIFs containing only one type of imidazole linker show separation capability for limited molecular pairs. We show that the effective pore size, hydrophilicity, and organophilicity of ZIFs can be continuously and drastically tuned using mixed-linker ZIFs containing two types of linkers, allowing their use as a more general molecular separation platform. We illustrate this remarkable behavior by adsorption and diffusion measurements of hydrocarbons, alcohols, and water in mixed-linker ZIF-8(x)-90(100-x) materials with a large range of crystal sizes (338 nm to 120 μm), using volumetric, gravimetric, and PFG-NMR methods. NMR, powder FT-Raman, and micro-Raman spectroscopy unambiguously confirm the mixed-linker nature of individual ZIF crystals. Variation of the mixed-linker composition parameter (x) allows continuous control of n-butane, i-butane, butanol, and isobutanol diffusivities over 2-3 orders of magnitude and control of water and alcohol adsorption especially at low activities.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"