Add like
Add dislike
Add to saved papers

Prevalence of Extended Spectrum β-lactamase-Producing Klebsiella pneumoniae in Clinical Isolates.

BACKGROUND: Extended spectrum β-lactamase (ESBL) are gram-negative bacteria that produce the enzyme, β-lactamase, which can break down commonly used antibiotics, such as penicillin and cephalosporins, making infections with ESBL producing bacteria more difficult to treat. Extended spectrum β-lactamase-producing Klebsiella pneumoniae were first reported in 1983 from Germany, and since then a steady increase in resistance against cephalosporins has been seen causing health problems.

OBJECTIVES: The aim of this study was to determine the prevalence of ESBL in strains of K. pneumoniae isolated from different clinical samples.

PATIENTS AND METHODS: One hundred and thirty isolates of K. pneumoniae were isolated from different clinical specimens from King Khalid hospital, Hafr Elbatin, Kingdom Saudi Arabia. These isolates were then characterized, tested for antimicrobial susceptibility and screened for ESBL production by the MicroScan WalkAway-96 SI System. Extended spectrum β-lactamase production was confirmed by the phenotypic confirmatory disc diffusion test (PCDDT) and the double disc synergy test (DDST).

RESULTS: Overall, 76.9% (100) of the isolates were resistant to cefuroxime, cefepime and cefazolin, 69.23% (90) were resistant to cefotaxime, and 46.15% (60) were resistant to cefoxitin. Extended spectrum β-lactamase was detected in 53.8% (70) of K. pneumoniae as detected by the MicroScan "WalkAway-96" SI System and 50.07% (66) by PCDDT and 46.15% (60) by DDST. All K. pneumoniae isolates were resistant to ampicillin followed by both piperacillin and mezlocillin 92.30% (120). K. pneumoniae isolates showed high sensitivity to imipenem (15.38%) (20), followed by ertapenem, tetracycline, tigecycline pipracilline/tazobactam and amikacin (23.07%) (30).

CONCLUSIONS: Our study showed that the prevalence of ESBL-producing K. pneumoniae at King Khalid Hospital was significantly high. Routine detection of ESBL-producing microorganisms is required by each of the laboratory standard detection methods to control the spread of these infections and allow a proper therapeutic strategy. For detection, the phenotypic confirmatory disc diffusion test is simple, sensitive and cost effective. However, there is a need for larger scale drug susceptibility surveillance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app