JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Neuronal oscillations as a mechanistic substrate of auditory temporal prediction.

Neuronal oscillations are comprised of rhythmic fluctuations of excitability that are synchronized in ensembles of neurons and thus function as temporal filters that dynamically organize sensory processing. When perception relies on anticipatory mechanisms, ongoing oscillations also provide a neurophysiological substrate for temporal prediction. In this article, we review evidence for this account with a focus on auditory perception. We argue that such "oscillatory temporal predictions" can selectively amplify neuronal sensitivity to inputs that occur in a predicted, task-relevant rhythm and optimize temporal selection. We elaborate this argument for a prototypic example, speech processing, where information is present at multiple time scales, with delta, theta, and low-gamma oscillations being specifically and simultaneously engaged, enabling multiplexing. We then consider the origin of temporal predictions, specifically the idea that the motor system is involved in the generation of such prior information. Finally, we place temporal predictions in the general context of internal models, discussing how they interact with feature-based or spatial predictions. We propose that complementary predictions interact synergistically according to a dominance hierarchy, shaping perception in the form of a multidimensional filter mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app