JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

A recombinant fragment of von Willebrand factor reduces fibrin-rich microthrombi formation in mice with endotoxemia.

INTRODUCTION: Disseminated fibrin deposition in the microvasculature such as in disseminated intravascular coagulation (DIC) arises from uninhibited activated coagulation secondary to sustained systemic inflammation. Currently there is no treatment for DIC. Treating the underlying trigger and supportive care are the current recommendations to manage DIC. This study aims at using recombinant von Willebrand factor (VWF) A2 domain polypeptide to inhibit VWF-mediated platelet adhesion to fibrin and prevent DIC.

MATERIALS AND METHODS: We use flow chamber assay to test the capacity of purified A2 protein to inhibit platelet adhesion to immobilized fibrin(ogen) and platelet-fibrin clot formation. We use a murine model of lipopolysaccharide-induced DIC to examine the effect of A2 protein on DIC.

RESULTS: The A2 protein blocked flow-dependent platelet adhesion to fibrin, delayed fibrin polymerization, and inhibited platelet-fibrin clot formation in vitro. The infusion of the purified A2 protein to the endotoxin-treated mice prevented fibrin-rich microthrombi formation in brain, lung, kidney, and liver. It also attenuated levels of inflammatory mediators, and markedly reduced mortality rates at 96hours.

CONCLUSIONS: The A2 protein inhibited platelet interaction with fibrin(ogen). Furthermore, A2 prevented disseminated fibrin-rich microthrombi and decrease mortality in a lipopolysaccharide-induced DIC murine model. A2 could provide a novel therapeutic approach in critically ill patients with uninhibited activated coagulation and disseminated fibrin deposition such as DIC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app