JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Selective and non-selective non-steroidal anti-inflammatory drugs differentially regulate pulmonary vein and atrial arrhythmogenesis.

BACKGROUND: Non-steroidal anti-inflammatory drugs (NSAIDs) increase the risk of atrial fibrillation (AF). This study investigated whether selective and non-selective NSAIDs differentially regulate the arrhythmogenesis of pulmonary veins and atria.

METHODS: Conventional microelectrodes were used to record action potentials (APs) in isolated rabbit PVs, sinoatrial node (SAN), left atrium (LA), and right atrium (RA) preparations before and after celecoxib or indomethacin administration. A whole-cell patch clamp was used to record the sodium-calcium exchanger (NCX) current, L-type calcium current (ICa-L), and late sodium current (INa-late) before and after celecoxib administration in isolated PV cardiomyocytes.

RESULTS: Celecoxib (0.3, 1, and 3 μM) reduced PV spontaneous beating rates, and induced delayed afterdepolarizations and burst firings in four of eight PV preparations (50%, p<0.05). Celecoxib also reduced SAN beating rates and decreased AP durations (APDs) in RA and LA, but did not change the resting membrane potential. Indomethacin (0.3, 1, 3, and 10 μM) changed neither the PV or SAN beating rates nor RA APDs, but it reduced LA APDs. Celecoxib (3 μM) significantly increased the NCX current and decreased the ICa-L, but did not change the INa-late. Ranolazine (10 μM) suppressed celecoxib (3 μM)-induced PV burst firings in 6 (86%, p<0.05) of 7 PVs. KB-R7943 (10 μM) suppressed celecoxib (3 μM)-induced PV burst firings in 5 (71%, p<0.05) of 7 PVs.

CONCLUSIONS: Selective and non-selective NSAIDs differentially modulate PV and atrial electrophysiological characteristics. Celecoxib increased PV triggered activity through enhancement of the NCX current, which contributed to its arrhythmogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app