JOURNAL ARTICLE

Proteomic Analysis of Human Pluripotent Stem Cell-Derived, Fetal, and Adult Ventricular Cardiomyocytes Reveals Pathways Crucial for Cardiac Metabolism and Maturation

Ellen Poon, Wendy Keung, Yimin Liang, Rajkumar Ramalingam, Bin Yan, Shaohong Zhang, Anant Chopra, Jennifer Moore, Anthony Herren, Deborah K Lieu, Hau San Wong, Zhihui Weng, On Tik Wong, Yun Wah Lam, Gordon F Tomaselli, Christopher Chen, Kenneth R Boheler, Ronald A Li
Circulation. Cardiovascular Genetics 2015, 8 (3): 427-36
25759434

BACKGROUND: Differentiation of pluripotent human embryonic stem cells (hESCs) to the cardiac lineage represents a potentially unlimited source of ventricular cardiomyocytes (VCMs), but hESC-VCMs are developmentally immature. Previous attempts to profile hESC-VCMs primarily relied on transcriptomic approaches, but the global proteome has not been examined. Furthermore, most hESC-CM studies focus on pathways important for cardiac differentiation, rather than regulatory mechanisms for CM maturation. We hypothesized that gene products and pathways crucial for maturation can be identified by comparing the proteomes of hESCs, hESC-derived VCMs, human fetal and human adult ventricular and atrial CMs.

METHODS AND RESULTS: Using two-dimensional-differential-in-gel electrophoresis, 121 differentially expressed (>1.5-fold; P<0.05) proteins were detected. The data set implicated a role of the peroxisome proliferator-activated receptor α signaling in cardiac maturation. Consistently, WY-14643, a peroxisome proliferator-activated receptor α agonist, increased fatty oxidative enzyme level, hyperpolarized mitochondrial membrane potential and induced a more organized morphology. Along this line, treatment with the thyroid hormone triiodothyronine increased the dynamic tension developed in engineered human ventricular cardiac microtissue by 3-fold, signifying their maturation.

CONCLUSIONS: We conclude that the peroxisome proliferator-activated receptor α and thyroid hormone pathways modulate the metabolism and maturation of hESC-VCMs and their engineered tissue constructs. These results may lead to mechanism-based methods for deriving mature chamber-specific CMs.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
25759434
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"