JOURNAL ARTICLE

Distinct polarity cues direct Taz/Yap and TGFβ receptor localization to differentially control TGFβ-induced Smad signaling

Masahiro Narimatsu, Payman Samavarchi-Tehrani, Xaralabos Varelas, Jeffrey L Wrana
Developmental Cell 2015 March 9, 32 (5): 652-6
25758863
We and others have shown that the Hippo pathway effectors TAZ and YAP direct Smad activity to regulate TGFβ family-induced cellular responses in stem cell and cancer biology. In polarized epithelial cells we showed that the Crumbs complex promotes Hippo-dependent cytoplasmic TAZ/YAP localization that restricts TGFβ-induced Smad nuclear accumulation and activity. In this Developmental Cell issue, basal-lateral restriction of TGFβ receptors is proposed as the sole mechanism suppressing Smad signaling in epithelial cells. Here we show that basal recruitment of TGFβ receptors occurs subsequent to Hippo-dependent suppression of Smad activity by cytoplasmic TAZ/YAP. Our results demonstrate that receptor sequestration and Hippo control of activated Smads are distinct events regulating TGFβ signaling in polarized epithelia and raise interesting questions about the function of these pathways in controlling Smad signaling in development, homeostasis, and disease. This Matters Arising Response addresses the Nallet-Staub et al. (2015) Matters Arising, published concurrently in Developmental Cell.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
25758863
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"