Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Beneficial effect of cyclosporine A on traumatic hemorrhagic shock.

BACKGROUND: Vascular hyporeactivity plays an important role in severe trauma and shock. We investigated the beneficial effect of cyclosporine A (CsA) on traumatic shock and its relationship to vascular reactivity improvement and mitochondrial permeability transition pore (MPTP).

MATERIALS AND METHODS: Sodium pentobarbital-anesthetized rats were used to induce traumatic hemorrhagic shock by left femur fracture and hemorrhage, the beneficial effects of CsA (1, 5, and 10 mg/kg, intravenously) on animal survival, cardiovascular function, tissue blood perfusion, and mitochondrial function of vital organs were observed. In addition, hypoxia-treated vascular smooth muscle cells from normal rats were used to investigate the relationship of this beneficial effect of CsA to Rho-associated serine/threonine kinase (ROCK) and protein kinase C.

RESULTS: CsA prolonged the survival time and increased the 24-h survival rate of traumatic hemorrhagic shock (31%, 56%, and 56% in 1, 5, and 10 mg/kg CsA group versus 25% in lactated Ringer solution group). Five milligrams per kilogram of CsA had the best effect, which stabilized and improved the hemodynamics, increased the tissue blood flow, and improved the liver and kidney function including its mitochondrial function in shock rats. CsA had no significant influences on the production of inflammatory mediators and cardiac output after traumatic hemorrhagic shock. Further results indicated that CsA significantly improved the vascular constriction and dilation reactivity of superior mesenteric artery to norepinephrine and acetylcholine, which was antagonized by ROCK inhibitor, Y27632, but not by protein kinase C inhibitor, staurosporine. Further studies showed that CsA restored hypoxia-induced decrease of ROCK activity and inhibited the opening of MPTP in hypoxia-treated vascular smooth muscle cells.

CONCLUSIONS: CsA is beneficial for the treatment of traumatic hemorrhagic shock. The mechanism is mainly through improving the vascular reactivity, stabilizing the hemodynamics, and increasing tissue perfusion. This beneficial effect of CsA is related to the inhibitory effect of CsA on MPTP opening. ROCK is an important regulator molecule in this process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app