Add like
Add dislike
Add to saved papers

Fiber type-specific response of skeletal muscle satellite cells to high-intensity resistance training in dialysis patients.

Muscle & Nerve 2015 November
INTRODUCTION: The aim of this study was to assess the effect of high-intensity resistance training on satellite cell (SC) and myonuclear number in the muscle of patients undergoing dialysis.

METHODS: Patients (n = 21) underwent a 16-week control period, followed by 16 weeks of resistance training 3 times weekly. SC and myonuclear number were determined by immunohistochemistry of vastus lateralis muscle biopsy cross-sections. Knee extension torque was tested in a dynamometer.

RESULTS: During training, SCs/type I fibers increased by 15%, whereas SCs/type II fibers remained unchanged. Myonuclear content of type II, but not type I, fibers increased with training. Before the control period, the SC content of type II fibers was lower than that of type I fibers, whereas contents were comparable when normalized to fiber area. Torque increased after training.

CONCLUSIONS: Increased myonuclear content of type II muscle fibers of dialysis patients who perform resistance training suggests that SC dysfunction is not the limiting factor for muscle growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app