JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Disturbance of hippocampal H2S generation contributes to CUMS-induced depression-like behavior: involvement in endoplasmic reticulum stress of hippocampus.

The chronic unpredictable mild stress (CUMS) model is a widely used experimental model of depression. Exogenous stress-induced neuronal cell death in the hippocampus is closely associated with the pathogenesis of depression. Excessive and prolonged endoplasmic reticulum (ER) stress triggers cell death. Hydrogen sulfide (H2S), the third endogenous signaling gasotransmitter, plays an important role in brain functions as a neuromodulator and a neuroprotectant. We hypothesized that the disturbance of endogenous H2S generation and ER stress in the hippocampus might be involved in CUMS-induced depression-like behaviors. Thus, the present study focused on whether CUMS disturbs the generation of endogenous H2S and up-regulates ER stress in the hippocampus and whether exogenous H2S prevents CUMS-induced depressive-like behaviors. Results showed that CUMS-treated rats exhibit depression-like behavior and hippocampal ER stress responses including up-regulated levels of glucose-regulated protein 78, CCAAT/enhancer binding protein homologous protein, and cleaved caspase-12 expression, while the endogenous generation of H2S in the hippocampus is suppressed in CUMS-treated rats. Furthermore, exogenous H2S prevents CUMS-induced depression-like behavior. These data indicated that CUMS-induced depression-like behaviors are related to the disturbance of endogenous H2S generation and ER stress in the hippocampus and suggested that endogenous H2S and ER stress are novel treatment targets of depression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app