JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Ammonia metabolism and hyperammonemic disorders.

Human adults produce around 1000 mmol of ammonia daily. Some is reutilized in biosynthesis. The remainder is waste and neurotoxic. Eventually most is excreted in urine as urea, together with ammonia used as a buffer. In extrahepatic tissues, ammonia is incorporated into nontoxic glutamine and released into blood. Large amounts are metabolized by the kidneys and small intestine. In the intestine, this yields ammonia, which is sequestered in portal blood and transported to the liver for ureagenesis, and citrulline, which is converted to arginine by the kidneys. The amazing developments in NMR imaging and spectroscopy and molecular biology have confirmed concepts derived from early studies in animals and cell cultures. The processes involved are exquisitely tuned. When they are faulty, ammonia accumulates. Severe acute hyperammonemia causes a rapidly progressive, often fatal, encephalopathy with brain edema. Chronic milder hyperammonemia causes a neuropsychiatric illness. Survivors of severe neonatal hyperammonemia have structural brain damage. Proposed explanations for brain edema are an increase in astrocyte osmolality, generally attributed to glutamine accumulation, and cytotoxic oxidative/nitrosative damage. However, ammonia neurotoxicity is multifactorial, with disturbances also in neurotransmitters, energy production, anaplerosis, cerebral blood flow, potassium, and sodium. Around 90% of hyperammonemic patients have liver disease. Inherited defects are rare. They are being recognized increasingly in adults. Deficiencies of urea cycle enzymes, citrin, and pyruvate carboxylase demonstrate the roles of isolated pathways in ammonia metabolism. Phenylbutyrate is used routinely to treat inherited urea cycle disorders, and its use for hepatic encephalopathy is under investigation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app