JOURNAL ARTICLE

Construction of allitol synthesis pathway by multi-enzyme coexpression in Escherichia coli and its application in allitol production

Yueming Zhu, Hongyi Li, Pingping Liu, Jiangang Yang, Xueli Zhang, Yuanxia Sun
Journal of Industrial Microbiology & Biotechnology 2015, 42 (5): 661-9
25724336
An engineered strain for the conversion of D-fructose to allitol was developed by constructing a multi-enzyme coupling pathway and cofactor recycling system in Escherichia coli. D-Psicose-3-epimerase from Ruminococcus sp. and ribitol dehydrogenase from Klebsiella oxytoca were coexpressed to form the multi-enzyme coupling pathway for allitol production. The cofactor recycling system was constructed using the formate dehydrogenase gene from Candida methylica for continuous NADH supply. The recombinant strain produced 10.62 g/l allitol from 100 mM D-fructose. To increase the intracellular concentration of the substrate, the glucose/fructose facilitator gene from Zymomonas mobilis was incorporated into the engineered strain. The results showed that the allitol yield was enhanced significantly to 16.53 g/l with a conversion rate of 92 %. Through optimizing conversion conditions, allitol was produced effectively on a large scale by the whole-cell biotransformation system; the yield reached 48.62 g/l when 500 mM D-fructose was used as the substrate.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
25724336
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"