JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Fractionation, transfer, and ecological risks of heavy metals in riparian and ditch wetlands across a 100-year chronosequence of reclamation in an estuary of China.

The effect of reclamation on heavy metal concentrations and the ecological risks in ditch wetlands (DWs) and riparian wetlands (RWs) across a 100-year chronosequence in the Pearl River Estuary of China was investigated. Concentrations of 4 heavy metals (Cd, Cu, Pb, and Zn) in soil and plant samples, and sequential extracts of soil samples were determined, using inductively coupled plasma atomic absorption spectrometry. Results showed that heavy metal concentrations were higher in older DW soils than in the younger ones, and that the younger RW soils contained higher heavy metal concentrations compared to the older ones. Although the increasing tendency of heavy metal concentrations in soil was obvious after wetland reclamation, the metals Cu, Pb, and Zn exhibited low or no risks to the environment based on the risk assessment code (RAC). Cd, on the other hand, posed a medium or high risk. Cd, Pb, and Zn were mainly bound to Fe-Mn oxide, whereas most of Cu remained in the residual phase in both ditch and riparian wetland soils, and the residual proportions generally increased with depth. Bioconcentration and translocation factors for most of these four heavy metals significantly decreased in the DWs with older age (p<0.05), whereas they increased in the RWs with younger age (p<0.05). The DW soils contained higher concentrations of heavy metals in the organic fractions, whereas there were more carbonate and residual fractions in the RW soils. The non-bioavailable fractions of Cu and Zn, and the organic-bound Cd and Pb significantly inhibited plant growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app