JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Opioid peptides (DAGO-enkephalin, dynorphin A(1-13), BAM 22P) microinjected into the rat brainstem: comparison of their antinociceptive effect and their effect on neuronal firing in the rostral ventromedial medulla.

Brain Research 1989 October 31
The highly mu-selective agonist Tyr-D-Ala-Gly-MePhe-Gly-ol-enkephalin (DAGO) produces potent, dose-dependent naloxone-reversible antinociception when microinjected into the ventrolateral periaqueductal gray (PAG) (ED50 = 0.72 nmol) or rostral ventromedial medulla (RVM) (ED50 = 0.05 nmol) as measured on the rat tail flick (TF) assay. In single-unit recording experiments, DAGO microinjected into the PAG also affected On- and Off-Cell firing in the RVM in the same way as previously demonstrated by our group for morphine. PAG-microinjected DAGO inhibits spontaneous and noxious-evoked On-Cell firing (attenuating the characteristic On-Cell burst) (n = 19), and excites spontaneous Off-Cell firing, preventing the characteristic Off-Cell pause (n = 12) at doses which suppress the TF. These results support a major role for the mu receptor in PAG and RVM mechanisms of opiate antinociception. In our experiments using BAM22P, an endogenous weakly mu-selective opioid peptide, we could not demonstrate a dose-dependent antinociceptive effect, whether the peptide was microinjected supraspinally into the PAG (n = 9) or RVM (n = 11), or intrathecally at the lumbar cord (n = 4). In two animals, a naloxone-reversible antinociceptive effect was observed following the microinjection of 10 nmol BAM 22P into the RVM; however, no effect was seen in 3 animals microinjected with 20 nmol. Dyn A(1-13), a putative endogenous ligand for the kappa receptor, had no antinociceptive effect when microinjected into the ventrolateral PAG, and no effect on the firing (spontaneous or noxious-evoked) of RVM On (n = 3)- or Off (n = 2)-Cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app