Add like
Add dislike
Add to saved papers

Rac1-dependent secretion of platelet-derived CCL5 regulates neutrophil recruitment via activation of alveolar macrophages in septic lung injury.

Accumulating evidence suggest that platelets play an important role in regulating neutrophil recruitment in septic lung injury. Herein, we hypothesized that platelet-derived CCL5 might facilitate sepsis-induced neutrophil accumulation in the lung. Abdominal sepsis was induced by CLP in C57BL/6 mice. CLP increased plasma levels of CCL5. Platelet depletion and treatment with the Rac1 inhibitor NSC23766 markedly reduced CCL5 in the plasma of septic mice. Moreover, Rac1 inhibition completely inhibited proteasePAR4-induced secretion of CCL5 in isolated platelets. Immunoneutralization of CCL5 decreased CLP-induced neutrophil infiltration, edema formation, and tissue injury in the lung. However, inhibition of CCL5 function had no effect on CLP-induced expression of Mac-1 on neutrophils. The blocking of CCL5 decreased plasma and lung levels of CXCL1 and CXCL2 in septic animals. CCL5 had no effect on neutrophil chemotaxis in vitro, suggesting an indirect effect of CCL5 on neutrophil recruitment. Intratracheal challenge with CCL5 increased accumulation of neutrophils and formation of CXCL2 in the lung. Administration of the CXCR2 antagonist SB225002 abolished CCL5-induced pulmonary recruitment of neutrophils. Isolated alveolar macrophages expressed significant levels of the CCL5 receptors CCR1 and CCR5. In addition, CCL5 triggered significant secretion of CXCL2 from isolated alveolar macrophages. Notably, intratracheal administration of clodronate not only depleted mice of alveolar macrophages but also abolished CCL5-induced formation of CXCL2 in the lung. Taken together, our findings suggest that Rac1 regulates platelet secretion of CCL5 and that CCL5 is a potent inducer of neutrophil recruitment in septic lung injury via formation of CXCL2 in alveolar macrophages.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app