JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Photophysical properties of β-substituted free-base corroles.

Inorganic Chemistry 2015 March 17
Corroles are an emergent class of fluorophores that are finding an application and reaction chemistry to rival their porphyrin analogues. Despite a growing interest in the synthesis, reactivity, and functionalization of these macrocycles, their excited-state chemistry remains undeveloped. A systematic study of the photophysical properties of β-substituted corroles was performed on a series of free-base β-brominated derivatives as well as a β-linked corrole dimer. The singlet and triplet electronic states of these compounds were examined with steady-state and time-resolved spectroscopic methods, which are complemented with density functional theory (DFT) and time-dependent DFT calculations to gain insight into the nature of the electronic structure. Selective bromination of a single molecular edge manifests in a splitting of the Soret band into x and y polarizations, which is a consequence of asymmetry of the molecular axes. A pronounced heavy atom effect is the primary determinant of the photophysical properties of these free-base corroles; bromination decreases the fluorescence quantum yield (from 15% to 0.47%) and lifetime (from 4 ns to 80 ps) by promoting enhanced intersystem crossing, as evidenced by a dramatic increase in knr with bromine substitution. The nonbrominated dimer exhibits absorption and emission features comparable to those of the tetrabrominated derivative, suggesting that oligomerization provides a means of red-shifting the spectral properties akin to bromination but without decreasing the fluorescence quantum yield.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app