JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Role of the Keap1/Nrf2 pathway in neurodegenerative diseases.

As the elderly population increases, a growing number of individuals suffer from age-associated neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Oxidative stress is considered to play a crucial role in the pathogenesis of age-related diseases. The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) is activated by oxidative stress and regulates the expression of a variety of antioxidant enzymes and proteins that exert cytoprotective effects against oxidative stress. Numerous studies have addressed the role of Nrf2 in age-related diseases, including neurodegenerative diseases, using animal or in vitro cell culture models. Here, we introduce the role of oxidative stress in the pathogenesis of neurodegenerative diseases and critically examine the recent findings concerning the role for Nrf2 in the amelioration of AD and PD. Nrf2 not only regulates antioxidant proteins but also regulates the genes associated with autophagy and nerve growth factor signaling. Current research unequivocally demonstrates that the activation of the Nrf2 pathway is a promising novel strategy for the prevention and modification of neurodegenerative diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app