Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A direct self-constructing neural controller design for a class of nonlinear systems.

This paper is concerned with the problem of adaptive neural control for a class of uncertain or ill-defined nonaffine nonlinear systems. Using a self-organizing radial basis function neural network (RBFNN), a direct self-constructing neural controller (DSNC) is designed so that unknown nonlinearities can be approximated and the closed-loop system is stable. The key features of the proposed DSNC design scheme can be summarized as follows. First, different from the existing results in literature, a self-organizing RBFNN with adaptive threshold is constructed online for DSNC to improve the control performance. Second, the control law and adaptive law for the weights of RBFNN are established so that the closed-loop system is stable in the term of Lyapunov stability theory. Third, the tracking error is guaranteed to uniformly asymptotically converge to zero with the aid of an additional robustifying control term. An example is finally given to demonstrate the design procedure and the performance of the proposed method. Simulation results reveal the effectiveness of the proposed method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app