Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Chemical composition and biological activities of trans-Himalayan alga Spirogyra porticalis (Muell.) Cleve.

The freshwater alga Spirogyra porticalis (Muell.) Cleve, a filamentous charophyte, collected from the Indian trans-Himalayan cold desert, was identified on the basis of morpho-anatomical characters. Extracts of this alga were made using solvents of varying polarity viz. n-hexane, acetonitrile, methanol and water. The antioxidant capacities and phenolic profile of the extracts were estimated. The methanol extract showing highest antioxidant capacity and rich phenolic attributes was further investigated and phytochemical profiling was conducted by gas chromatography-mass spectrometry (GC/MS) hyphenated technique. The cytotoxic activity of methanol extract was evaluated on human hepatocellular carcinoma HepG2 and colon carcinoma RKO cell lines. The anti-hypoxic effect of methanol extract of the alga was tested on in vivo animal system to confirm its potential to ameliorate oxidative stress. The antioxidant assays viz. ferric reducing antioxidant power (FRAP), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH) and nitric oxide (NO) radical scavenging capacities, β-carotene-linoleic acid bleaching property and lipid peroxidation exhibited analogous results, wherein the algal extracts showed significantly high antioxidant potential. The extracts were also found to possess high content of total proanthocyanidin, flavonoid and polyphenol. GC/MS analysis revealed the presence of thirteen chemotypes in the methanol extract representing different phytochemical groups like fatty acid esters, sterols, unsaturated alcohols, alkynes etc. with substantial phyto-pharmaceutical importance. The methanol extract was observed to possess anticancer activity as revealed from studies on HepG2 and RKO cell lines. In the present study, S. porticalis methanol extract also provided protection from hypoxia-induced oxidative stress and accelerated the onset of adaptative changes in rats during exposure to hypobaric hypoxia. The bioactive phytochemicals present in this trans-Himalayan alga are of enormous interest and can be utilized sustainably for discovery of novel drugs against oxidative stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app