JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Activation of cannabinoid receptor 2 enhances osteogenic differentiation of bone marrow derived mesenchymal stem cells.

Bone marrow derived mesenchymal stem cells (BM-MSCs) are considered as the most promising cells source for bone engineering. Cannabinoid (CB) receptors play important roles in bone mass turnover. The aim of this study is to test if activation of CB2 receptor by chemical agonist could enhance the osteogenic differentiation and mineralization in bone BM-MSCs. Alkaline phosphatase (ALP) activity staining and real time PCR were performed to test the osteogenic differentiation. Alizarin red staining was carried out to examine the mineralization. Small interference RNA (siRNA) was used to study the role of CB2 receptor in osteogenic differentiation. Results showed activation of CB2 receptor increased ALP activity, promoted expression of osteogenic genes, and enhanced deposition of calcium in extracellular matrix. Knockdown of CB2 receptor by siRNA inhibited ALP activity and mineralization. Results of immunofluorescent staining showed that phosphorylation of p38 MAP kinase is reduced by knocking down of CB2 receptor. Finally, bone marrow samples demonstrated that expression of CB2 receptor is much lower in osteoporotic patients than in healthy donors. Taken together, data from this study suggested that activation of CB2 receptor plays important role in osteogenic differentiation of BM-MSCs. Lack of CB2 receptor may be related to osteoporosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app