JOURNAL ARTICLE

Feasibility and utility of applications of the common data model to multiple, disparate observational health databases

Erica A Voss, Rupa Makadia, Amy Matcho, Qianli Ma, Chris Knoll, Martijn Schuemie, Frank J DeFalco, Ajit Londhe, Vivienne Zhu, Patrick B Ryan
Journal of the American Medical Informatics Association: JAMIA 2015, 22 (3): 553-64
25670757

OBJECTIVES: To evaluate the utility of applying the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) across multiple observational databases within an organization and to apply standardized analytics tools for conducting observational research.

MATERIALS AND METHODS: Six deidentified patient-level datasets were transformed to the OMOP CDM. We evaluated the extent of information loss that occurred through the standardization process. We developed a standardized analytic tool to replicate the cohort construction process from a published epidemiology protocol and applied the analysis to all 6 databases to assess time-to-execution and comparability of results.

RESULTS: Transformation to the CDM resulted in minimal information loss across all 6 databases. Patients and observations excluded were due to identified data quality issues in the source system, 96% to 99% of condition records and 90% to 99% of drug records were successfully mapped into the CDM using the standard vocabulary. The full cohort replication and descriptive baseline summary was executed for 2 cohorts in 6 databases in less than 1 hour.

DISCUSSION: The standardization process improved data quality, increased efficiency, and facilitated cross-database comparisons to support a more systematic approach to observational research. Comparisons across data sources showed consistency in the impact of inclusion criteria, using the protocol and identified differences in patient characteristics and coding practices across databases.

CONCLUSION: Standardizing data structure (through a CDM), content (through a standard vocabulary with source code mappings), and analytics can enable an institution to apply a network-based approach to observational research across multiple, disparate observational health databases.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
25670757
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"