On the nature of long range electronic coupling in a medium: distance and orientational dependence for chromophores in molecular aggregates

Maximilian P E Lock, David L Andrews, Garth A Jones
Journal of Chemical Physics 2014 January 28, 140 (4): 044103
The electronic coupling that mediates energy transfer in molecular aggregates is theoretically investigated using the principles of quantum electrodynamics (QED). In this context, both the electromagnetic tensor and rate equation relating to these couplings are re-examined with a focus on the role of the relative distance and orientation of transition dipole moment pairs, considering near-, intermediate-, and far-zone contributions to the coupling. The QED based coupling terms are investigated both analytically and numerically, and they are physically interpreted in terms of the character of the mediating (virtual) photons. The spatial dependence of the couplings for a two-dimensional molecular aggregate of ordered and isotropic transition dipole moments is numerically calculated. Further, Pauli Master Equations are employed for a one-dimensional chain of molecules and donor-acceptor pairs, to investigate the importance of intermediate- and far-zone contributions to the electronic coupling on electronic energy transfer dynamics. The results indicate that although Förster theory is often qualitatively and quantitatively correct for describing electronic energy transfer (EET) processes, intermediate- and far-zone coupling terms could sometimes be non-negligible for correctly describing EET in natural and artificial, mesoscopic, solar energy harvesting systems. In particular, the results indicate that these terms are non-negligible when using Förster resonance energy transfer spectroscopic ruler techniques for distances >10 nm.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"