Add like
Add dislike
Add to saved papers

Vibronic phenomena and exciton-vibrational interference in two-dimensional spectra of molecular aggregates.

A general theory of electronic excitations in aggregates of molecules coupled to intramolecular vibrations and the harmonic environment is developed for simulation of the third-order nonlinear spectroscopy signals. It is applied in studies of the time-resolved two-dimensional coherent spectra of four characteristic model systems: weakly/strongly vibronically coupled molecular dimers interacting with high/low frequency intramolecular vibrations. The results allow us to (i) classify and define the typical spectroscopic features of vibronically coupled molecules, (ii) separate the cases, when the long-lived quantum coherences due to vibrational lifetime borrowing should be expected, (iii) define when the complete exciton-vibrational mixing occurs, and (iv) when separation of excitonic and vibrational coherences is possible.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app