Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Double nuclear norm-based matrix decomposition for occluded image recovery and background modeling.

Robust principal component analysis (RPCA) is a new emerging method for exact recovery of corrupted low-rank matrices. It assumes that the real data matrix has low rank and the error matrix is sparse. This paper presents a method called double nuclear norm-based matrix decomposition (DNMD) for dealing with the image data corrupted by continuous occlusion. The method uses a unified low-rank assumption to characterize the real image data and continuous occlusion. Specifically, we assume all image vectors form a low-rank matrix, and each occlusion-induced error image is a low-rank matrix as well. Compared with RPCA, the low-rank assumption of DNMD is more intuitive for describing occlusion. Moreover, DNMD is solved by alternating direction method of multipliers. Our algorithm involves only one operator: the singular value shrinkage operator. DNMD, as a transductive method, is further extended into inductive DNMD (IDNMD). Both DNMD and IDNMD use nuclear norm for measuring the continuous occlusion-induced error, while many previous methods use L1 , L2 , or other M-estimators. Extensive experiments on removing occlusion from face images and background modeling from surveillance videos demonstrate the effectiveness of the proposed methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app