JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Persistent organic pollutants and polycyclic aromatic hydrocarbons in mosses after fire at the Brazilian Antarctic Station.

A fire at the Brazilian Antarctic Station on February 25th, 2012 led to the burning of material that produced organic pollutants. To evaluate the impact in the surrounding area, polycyclic aromatic hydrocarbons (PAHs) and persistent organic pollutants (POPs) were analyzed in moss samples collected in the vicinities of the station before and after the incident and compared to findings from previous studies in the same region. PCBs were on the same magnitude as that reported in previous studies, which could be associated to the global dispersion of these compounds and may not be related to the local fire. In contrast, concentrations of HCB and PAHs were higher than those reported in previous studies. No PBDEs were found above the method detection limit. Organic contaminant concentrations in mosses decreased a few months after the fire, which is an important characteristic when considering the use of mosses for monitoring recent exposure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app