COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Left ventricular adaptation to high altitude: speckle tracking echocardiography in lowlanders, healthy highlanders and highlanders with chronic mountain sickness.

Hypoxic exposure depresses myocardial contractility in vitro, but has been associated with indices of increased cardiac performance in intact animals and in humans, possibly related to sympathetic nervous system activation. We explored left ventricular (LV) function using speckle tracking echocardiography and sympathetic tone by spectral analysis of heart rate variability (HRV) in recently acclimatized lowlanders versus adapted or maladapted highlanders at high altitude. Twenty-six recently acclimatized lowlanders, 14 healthy highlanders and 12 highlanders with chronic mountain sickness (CMS) were studied. Control measurements at sea level were also obtained in the lowlanders. Altitude exposure in the lowlanders was associated with slightly increased blood pressure, decreased LV volumes and decreased longitudinal strain with a trend to increased prevalence of post-systolic shortening (p = 0.06), whereas the low frequency/high frequency (LF/HF) ratio increased (1.62 ± 0.81 vs. 5.08 ± 4.13, p < 0.05) indicating sympathetic activation. Highlanders had a similarly raised LF/HF ratio, but no alteration in LV deformation. Highlanders with CMS had no change in LV deformation, no significant increase in LF/HF, but decreased global HRV still suggestive of increased sympathetic tone, and lower mitral E/A ratio compared to healthy highlanders. Short-term altitude exposure in lowlanders alters indices of LV systolic function and increases sympathetic nervous system tone. Life-long altitude exposure in highlanders is associated with similar sympathetic hyperactivity, but preserved parameters of LV function, whereas diastolic function may be altered in those with CMS. Altered LV systolic function in recently acclimatized lowlanders may be explained by combined effects of hypoxia and changes in loading conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app