Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Calpain-1 induces endoplasmic reticulum stress in promoting cardiomyocyte apoptosis following hypoxia/reoxygenation.

Both calpain activation and endoplasmic reticulum (ER) stress are implicated in ischemic heart injury. However, the role of calpain in ER stress remains largely elusive. This study investigated whether calpain activation causes ER stress, thereby mediating cardiomyocyte apoptosis in an in vitro model of hypoxia/re-oxygenation (H/R). In neonatal mouse cardiomyocytes and rat cardiomyocyte-like H9c2 cells, up-regulation of calpain-1 sufficiently induced ER stress, c-Jun N-terminal protein kinase1/2 (JNK1/2) activation and apoptosis. Inhibition of ER stress or JNK1/2 prevented apoptosis induced by calpain-1. In an in vitro model of H/R-induced injury in cardiomyocytes, H/R was induced by a 24-hour hypoxia followed by a 24-hour re-oxygenation. H/R activated calpain-1, induced ER stress and JNK1/2 activation, and triggered apoptosis. Inhibition of calpain and ER stress blocked JNK1/2 activation and prevented H/R-induced apoptosis. Furthermore, blockade of JNK1/2 signaling inhibited apoptosis following H/R. The role of calpain in ER stress was also demonstrated in an in vivo model of ischemia/reperfusion using transgenic mice over-expressing calpastatin. In summary, calpain-1 induces ER stress and JNK1/2 activation, thereby mediating apoptosis in cardiomyocytes. Accordingly, inhibition of calpain prevents ER stress, JNK1/2 activation and apoptosis in H/R-induced cardiomyocytes. Thus, ER stress/JNK1/2 activation may represent an important mechanism linking calpain-1 to ischemic injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app