Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Chronic urocortin 2 administration improves cardiac function and ameliorates cardiac remodeling after experimental myocardial infarction.

The impact of chronic urocortin 2 (Ucn2) treatment after myocardial infarction (MI) has not previously been investigated. In this study, we examined the effects of 30-day Ucn2 administration (415 μg·kg·d SC per day) in mice post-MI. Compared with surgical sham + vehicle controls (n = 10), MI + vehicle animals (n = 10) after 30 days demonstrated decreased ejection fraction (75.6 ± 1.2 vs. 43.6% ± 0.8%, P < 0.001) and fractional shortening (38.20 ± 0.83 vs. 18.4% ± 0.54%, P < 0.001) in association with increased heart weight-to-body weight ratio (4.57 ± 0.25 vs. 5.29 ± 0.18, P < 0.01), left ventricular (LV) mass (91 ± 7 vs. 126 ± 8 mg, P < 0.01), LV internal diameters at both systole (1.91 ± 0.14 vs. 3.45 ± 0.09 mm, P < 0.001) and diastole (3.14 ± 0.15 vs. 4.25 ± 0.10 mm, P < 0.001), LV end systolic volumes (0.02 ± 0.01 vs. 0.11 ± 0.01 mL, P < 0.001), and ventricular collagen 1 and β-myosin heavy chain gene expression. Compared with MI + vehicle mice, MI + Ucn2 animals (n = 10) exhibited significantly reduced infarct size (4.00 ± 0.39 vs. 1.83 ± 0.44 mm, P < 0.01), heart weight-to-body weight ratio (4.75 ± 0.19, P = 0.06), LV mass (101 ± 6 mg, P < 0.01), LV internal diameters (systole 2.61 ± 0.09 mm, P < 0.001; diastole 3.78 ± 0.09 mm, P < 0.001), and end systolic volumes (0.14 ± 0.02 mL, P < 0.01) in conjunction with improved ejection fraction (65.2% ± 0.9%, P < 0.001) and fractional shortening (18.4 ± 0.5 vs. 30.5% ± 0.5%, P < 0.001). Ucn2 treatment also decreased collagen 1 and β-myosin heavy chain expression. In conclusion, chronic Ucn2 treatment significantly improves cardiovascular function and attenuates cardiac injury and remodeling in experimental MI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app