JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Characterization of porcine partially reprogrammed iPSCs from adipose-derived stem cells.

Reproduction 2015 May
Partially reprogrammed induced pluripotent stem cells (PiPSCs) have great potential for investigating reprogramming mechanisms and represent an alternative potential material for making genetically modified animals and regenerative medicine. To date, PiPSCs have scarcely been reported in detail when compared with mice and humans. In this study, we obtained PiPSCs from porcine adipose-derived stem cells (pADSCs) by ectopic expression of human transcription factors (OCT4, SOX2, c-MYC, and KLF4) in feeder-free condition. The morphology and proliferation activity of porcine PiPSCs (pPiPSCs) were similar to those of porcine fully reprogrammed iPSCs (pFiPSCs); furthermore, pPiPSCs expressed higher levels of the typical surface molecules (CD29) found in pADSCs. However, pPiPSCs were negative for key proteins (NANOG) connected with stemness and possessed lower differentiation ability in vivo and in vitro. When differentiation-inhibiting factors were withdrawn, pPiPSCs-derived cells (pPiPSC-DCs) showed similar features to pADSCs in many aspects, including proliferation, differentiation, and immunosuppression. When both types of cells were used to produce cloned embryos, we found that the blastocyst formation rate of 19DC (one of the pPiPSC-DC cell lines)-derived cloned embryos was obviously higher than that of others. The total cell number of 19DC-derived blastocysts was significantly higher than the 30DC (one pFiPSC-DC cell line)-derived blastocysts. In all, through limited differentiation ability, the proliferation activity of pPiPSCs is similar to that of pFiPSCs, and pPiPSCs can retain several of the features of pADSCs, which are beneficial to cell therapy. Furthermore, the differentiation of pPiPSCs is more favorable for producing high-quality reconstructed embryos.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app